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S U M M A R Y  
This paper is concerned with the existence of a three-dimensional solution to the free convection boundary layer 
equations near a two-dimensional isothermal surface. The numerical solution is presented, in detail, and it is noted that 
the resulting heat transfer at the body surface is over 25 ~ less than in the two-dimensional solution. 

1. Introduction 

The flow of a fluid arising as a result of free convection has provided the fluid dynamacist with 
a variety of interesting phenomena which has resulted in a great deal of research activity both 
theoretical and experimental. 

In the theoretical investigation into flows of this type much work has been done by invoking 
Prandtl's boundary layer concept and it is not surprising that, in one form or another, the flow 
occasioned by a vertical plate at a higher temperature than the surrounding fluid has been the 
topic of many previous investigations (see references in Ostrach [1] and Gebhart [2] ). Another 
free convection flow problem which has stimulated considerable interest concerns the flow 
field near a lower stagnation point. The adjective "lower" implies that the flow at the outer 
edge of the boundary layer is towards the surface so that the flow can be considered as one of 
attachment (i.e. the fluid attaching itself to the body surface). By supposing the body surface 
to be isothermal and assuming a two-dimensional flow field to exist, the problem has been 
considered, directly or indirectly, by Hermann [3J, Prins and Merk [4], Chen [5] and Poots 
[6], whereas the possibility of an axisymmetric flow field existing has been considered by 
Chiang et al. [7], and Poots [6]. 

The work of Poots i s particularly interesting because he derives the boundary layer equations 
governing the free convection flow at a general three-dimensional lower stagnation point, and 
shows that the two-dimensional and axisymmetric flows are just two special cases out of a 
continuous spectrum. Poots has in fact given exact numerical solutions to the three-dimensional 
boundary layer equations, when the Prandtl number is 0.72, for a number of blunt body shapes. 

The purpose of this note, however, is to suggest that other solutions (referred to as dual 
solution) exist over the whole range of stagnation points and Prandtl numbers, and, in par- 
ticular, to present a detailed numerical dual solution for the flow near a geometrical two- 
dimensional stagnation point with a Prandtl number of 0.72. 

2. The Boundary Layer Equations 

Poots has shown that the relevant boundary layer equations are* 

3u 3u Ou ~2u 
+ + w G = v y d  + a l 3 ( T - T . ) a x ,  bl ~X 

~v ~v 0v 0% 
+ + WUz z = + g (T-T )by, U ~x 

(1) 

(2) 

* The notation differs trivially from that used by Poots. 
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8u 8v dw 
N o, (3) 

3T 8T ~T cq2T 
+ v~iTvy + W~z  = k ~z-- T (4) u ~ -  x 

where (x, y, z) are cartesian co-ordinates with origin 0 at the stagnation point and such that z 
measures distance normal to the surface at 0; (u, v, w) are the respective velocities, T is the 
temperature while T~ is the temperature at infinity, g is the acceleration due to gravity, fl the 
coefficient of cubical expansion, k is the thermal diffusivity and v the kinematic viscosity. The 
two remaining parameters a and b are functions of the geometry of the body surface at 0: 
they are the curvatures of the body measured in the planes y = 0 and x = 0 respectively. 

The parameters a and b have been assumed non-negative by Poots so that solutions of the 
resulting equations lead to stagnation points which are nodal points of attachment. However, 
this restriction fails to recognise the possible existence of saddle points of attachment where 
either one of a, b is negative. It is hoped to present the results of such an investigation at a later 
stage, and for the present assume both a and b to be non-negative. 

In terms of the Grashof number, defined by Gr = fig (T O - T~)/a 3 v 2, where T O is the constant 
wall temperature, we look for a solution by writing* 

u = va2xGr~f'(Z),  v = vaeyaGr~g'(Z), w = - v a G r * ( f + a g )  (5) 

h(Z) = ( T -  T~)/(T o -  To~) 

where Z = Gr ~ az and ~ = (b/a) ~. The continuity equation (3) is automatically satisfied by this 
choice and equations (1), (2) and (4) yield 

f , ,  + ( f  + ag) f , ,_ f ,2  + h = O, 

g"' + ( f  + ag)g"-  otg '2 + cth = O, 

h" + a ( f + e g ) h ' = O  

(6) 
(7) 
(8) 

where a = v/k is the Prandtl number and dashes imply differentiation with respect to Z. These 
equations are to be solved subject to the boundary conditions 

f(0) = i f (0)  = g(0) = g'(0) = 0 ,  h(0) = 1, (9) 

f ' ( Z ) ~ O ,  g'(Z)--*O, h(Z)~O as Z ~ o o .  

As Poots points out, when c~ = 0 we can recover the well-known two-dimensional problem by 
assuming g -  0, while for ~ = 1 the assumption that f =  g gives rise to the axisymmetric problem. 
The general problem, where f, g and h are functions of the independent space variable Z 
and the two parameters a and ~ involves a large amount  of computing time and Poots took 
a = 0.72 and 0 < ~ < 1. However, it is of interest to note that the latter restriction is not important 
because, as can easily be verified, the ordinary differential equations (6), (7) and (8) imply that 

f (~z ,Z )=~-~g(~- l ,  cc~Z), g ( a , Z ) = ~ - ~ ' f ( ~ - l , ~ Z ) ,  h(~ ,Z)=h(~- l ,~;~Z)  (10) 

and so solutions for values ofc~ such that 0_< ~ < 1 can be used to generate solutions for 1 _< ~_< ~ ,  
simply by applying (10). 

Before proceeding it will be convenient to consider the asymptotic behaviour of f, g and h 
from equations (6), (7) and (8) for large Z. 

3. Asymptotic  Behaviour 

Because of the boundary condition (9) at Z = 0% we write 

f = ~ l + q ~ ,  g = 6 2 + 7 ,  h = z  

* There appears to be typographical errors in the analogous expressions quoted by Poots. 
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where 6t and f2 are constants that depend on tr and e, and the functions ~b, 7 and X, which also 
depend on a and e, are functions of Z that are assumed small so that products of these terms 
can be neglected compared with linear terms. Substitution into (6), (7) and (8) yields (on 
ignoring small terms) the equations 

# " + 0 # '  = - Z  (11) 

7'" + 07" = - ~Z (12) 
;(' + a O i =  0 (13) 

where 0 = 6x + ~62. 
The solution of (11), (12) and (13) for ~rr 1 leads to 

f = fix - A 2 e - # ~  B e - ~  , 

9 = 62 - c tA2e-~~  Ce -~  , 

h = A e-~oz, 

where 2-  a = 0 -2 03 (1 - a), whereas if o- = 1 then 

f = 6 x - A O - 2 Z e - ~  - ~  

9 = 6 2 - ~ A O - 2 Z e - ~  -~ , 

h = A e  -~ . 

A, B and C are constants which can be determined from the numerical solution. 
Two points should be noted at this juncture. First, the derivation of the asymptotic forms 

assumes that the constant 0 is strictly positive in order that f ' ,  g' and h should vanish as 
Z-+ oo ; this is clearly equivalent to the requirement that the flow is one of attachment. Secondly, 
even for a = 1, no vorticity decay arguments are necessary to reject certain solutions. In particu- 
lar, it does not appear possible to choose the solution corresponding to A = 0. 

Although these asymptotic forms derived here are useful (and clearly necessary incidentally) 
before attempting to compute a numerical solution, they do contain the, as yet, unknown 0 
so that it is not possible to choose the end of the range of integration at this stage. 

We shall, as indicated previously restrict attention to the case when cr = 0.72, but there is no 
obvious reason why the same sort of dual solution should not exist at other finite values of the 
Prandtl number. Reference to the situation when a ~  oo is made in section 5. 

4. The Dual Solution 

We show that, at 0c = 0, a solution exists the resulting flow field being of a three-dimensional 
nature, and as such is quite distinct from the usual two-dimensional form considered by previous 
authors. Poots assumes that when 0~ =0, # ( Z ) - 0  so that the equations (6) and (8) become 

f , , ,  + f f , , _ f , 2  + h = 0 ,  (14) 

h" +afh '  = O, (15) 

subject to 

f(0) = f ' (0 )  = h(0) -  1 = 0,  

f ' ( Z ) ~ O ,  h(Z)--O as Z-~oo.  

However, following a parallel investigation by Davey and Schofield I-8] into the forced 
convection problem, another solution is possible by first writing g = G/o~ and (F, H) instead of 
(f, h); substituting these forms into (6), (7) and (8) and taking the limit as ~ 0 ,  we get 

F'"+ (F+ O ) F " - F  '2 + H  = 0 ,  (16) 

G '"+  (F + G ) G " -  G '2 = 0 ,  (17) 

H " + a ( F + G ) H ' =  O, (18) 
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subject to the same conditions as in (9). It should be noted here that the velocity in the third 
dimension (i.e. in the Oy-direction) is, by virtue of (5), given by 

v = va2yGr ~ G' (Z) 

and so is a non-zero physical component, provided a non-zero function G (Z) exists. 
Now, although G - 0  is clearly one solution, it transpires that another non-zero solution of 

(17) exists. The asymptotic expansions for F and H have leading terms identical to those found 
in section 3 for f and h provided that we interpret 0 as 

O=At+A2,  

where A~ = lim V(Z) and Az= lim G(Z). The behaviour of G(Z)is then given by 
Z-*co Z ~ o o  

G(Z)=  A2 + C e -~ 

where C is a constant. 
A numerical solution to equations (16), (17) and (18) with a = 0.72 has been obtained using 

the technique known as the shooting method. Briefly, sets of trial values were assumed for 
H' (0), F"(0), G" (0) and the equations integrated* from Z = 0 to Z = 6. The guessed values of 
H' (0), F" (0), G" (0) were changed until, on integration, the boundary conditions H (6) = F'(6) = 
G' (6)= 0 were satisfied. The range of integration was progressively increased and the above 
process repeated until the terms H'(Z), F"(Z), G"(Z)in addition to H(Z), F'(Z), G'(Z)were 
negligibly small. This was achieved at Z = 21. 

The essential properties for the determination of H, F and G are 

H ' ( 0 ) = - 0 . 2 7 8 0 9 ,  F"(0)=0.96171,  G" (0) = - 0.28212 

which results in A a = 2.618 and A 2 = - 1.618. These results should be compared with the solution 
of (14) and (15) as computed by Poots (and checked during this investigation by the present 
author) who finds that 

h'(0) = -0.37411,  f"(0)  = 0.85604, o(Z)-= 0.  

which results in A ~ = 1.333. Table I shows the variation of F', G' and H with Z, and for com- 
parison also gives the two-dimensional results f '  (Z) and h (Z). 

An interesting point to notice here is that - h '  (0), which is a measure of the heat transfer 
at the stagnation point, is reduced by just over 25 ~ .  Another point of interest concerns the 
thickness of the boundary layer : this is indicated by the approach to the boundary conditions 
at Z = oc and which is reflected in the exponent in the exponential terms of the asymptotic 
expansion - 0 =  1.333 for the two-dimensional solution as compared with 1.000(!) for the 
present solution, indicating an increase in the boundary layer thickness of some 25 ~.  

The flow at stagnation points is classified according to the behaviour of the skin-friction 
lines on the body surface, and it is clear that the three-dimensional solution presented here 
corresponds to a saddle point of attachment. A diagrammatic sketch is given in figure 1. 

5. Large Prandtl Number 

Although the only dual solution presented in this investigation is for c~ = 0 and a = 0.72, there 
can be little doubt of their existence for other values of a (as in the forced convection problem: 
Schofield and Davey [91) and other finite Prandtt numbers. 

For very large Prandtl numbers, it is known that the problem can be posed as a singular 
perturbation one with small parameter a -1  (see [10] or [11]). We proceed by writing 

f(Z) = a-*fl(tl), 9(Z)= a-~91(~), h(Z)= lh(tl) 

where q=a~Z, so that the basic equations (6), (7) and (8)'become 

* A computer library procedure was used for the integration which had an automatic change of step-length facility 
for improving the accuracy. 
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0 

Figure 1. Diagrammatic sketch of the (u, v) velocity field. The Oz velocity component, w, is not shown but is towards 
the body surface, z=0, for all z. 

TABLE I 

Z F' f '  - G '  g' H h 

0 0 0 0 0 1.0 1.0 
0.2 0 . 1 7 2 8  0 . 1 5 1 8  0.0564 0 0 . 9 4 4 4  0.9252 
0.4 0 . 3 0 8 7  0 . 2 6 7 1  0.1125 0 0 . 8 8 8 9  0.8506 
0.6 0 . 4 1 1 9  0 . 3 5 0 1  0.1676 0 0 . 8 3 3 8  0.7766 
0.8 0 . 4 8 6 9  0 . 4 0 5 3  0.2205 0 0 . 7 7 9 3  0.7039 
1.0 0 . 5 3 8 5  0 . 4 3 7 2  0.2701 0 0 . 7 2 6 0  0.6333 
1.2 0.5710 0.4502 0.3149 0 0 . 6 7 4 1  0.5654 
1.4 0 . 5 8 8 3  0 . 4 4 8 3  0.3537 0 0 . 6 2 4 0  0.5011 
1.6 0 . 5 9 3 8  0 . 4 3 5 0  0.3855 0 0 . 5 7 6 0  0.4409 
1.8 0 . 5 9 0 3  0 . 4 1 3 7  0.4094 0 0 . 5 3 0 3  0.3852 
2.0 0 . 5 8 0 0  0 . 3 8 6 8  0.4251 0 0 . 4 8 7 0  0.3344 
2.2 0 . 5 6 4 8  0 . 3 5 6 6  0.4327 0 0 . 4 4 6 3  0.2886 
2.4 0 . 5 4 5 9  0 . 3 2 4 9  0.4325 0 0 . 4 0 8 0  0.2476 
2.6 0 . 5 2 4 5  0 . 2 9 2 9  0.4252 0 0 . 3 7 2 2  0.2114 
2.8 0 . 5 0 1 4  0 . 2 6 1 7  0.4117 0 0 . 3 3 8 8  0.1797 
3.0 0 . 4 7 7 2  0 . 2 3 2 0  0.3931 0 0 . 3 0 7 8  0.152t 

3.4 0 . 4 2 7 2  0 . 1 7 8 7  0.3450 0 0 . 2 5 2 4  0.1079 
3.8 0.3771 0 . 1 3 4 6  0.2895 0 0 . 2 0 5 1  0.0757 
4.2 0 . 3 2 8 6  0 . 0 9 9 6  0.2337 0 0 . 1 6 5 3  0.0527 
4.6 0 . 2 8 2 9  0 . 0 7 2 7  0.1826 0 0 . 1 3 2 0  0.0364 
5.0 0 . 2 4 0 4  0 . 0 5 2 4  0.t387 0 0 . 1 0 4 5  0.0251 
5.4 0 . 2 0 1 9  0 . 0 3 7 5  0.1029 0 0 . 0 8 2 1  0.0172 
5.8 0 . 1 6 7 7  0 . 0 2 6 6  0.0748 0 0 . 0 6 4 0  0.0118 
6.2 0 . 1 3 7 7  0 . 0 1 8 7  0.0535 0 0 . 0 4 9 5  0.0081 
6.6 0 . 1 1 2 0  0 . 0 1 3 1  0.0378 0 0 . 0 3 8 1  0.0055 
7.0 0 . 0 9 0 3  0 . 0 0 9 2  0.0264 0 0 . 0 2 9 2  0.0038 

8.0 0 . 0 5 0 8  0 . 0 0 3 7  0.0104 0 0.0147 
9.0 0 . 0 2 7 5  0 . 0 0 1 4  0.0039 0 0.0073 

10.0  0 . 0 1 4 5  0 . 0 0 0 6  0.0015 0 0.0036 
12.0  0 . 0 0 3 8  0 . 0 0 0 1  0.0002 0 0.0009 
14.0  0 . 0 0 0 9  0 . 0 0 0 0  0.0000 0 0.0002 
16 .0  0.0002 0 0.0000 
18 .0  0.0000 

0.0014 
0.0006 
0.0002 
0.0000 
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f~,, + hi = a -1  { f~2_  ( f  a + ~ , 

"' + ~h + ~ " 01 1 = a - I  {~g'x z - ( f ~  ga)g~} , 

h'~ + (A  q-~zgl)h'l - 0 ,  

(19) 

(20) 

(21) 

where dashes now imply differentiation with respect to r/. The boundary conditions are the 
same as in (9) with Z replaced by t/. 

On taking the limit as a--* ~ ,  we obtain 

f~"+h~ = O, g'~"+~h~ = O, h~'+(f~ +~gl)h '  1 = 0 

for the first approximation. The boundary conditions to be imposed are 

f~(0) = f~'(0)= 91(0) = g~(0) = ha (0 ) -  1 = 0 ,  

/ ; ' ( q ) ~ 0 ,  #'~(t/)~0, h~(~)~0 as t / ~ .  

The boundary conditions f ; ( t / )~0,  g] (r/)~0 as t / ~  in the exact equations cannot now be 
applied, and instead we impose zero shear stress at r/= oo. The physical reason for this is because, 
as a becomes very large the thermal layer becomes much thinner than the momentum layer, so 
that at the edge of the thermal layer the velocities are still finite. 

It follows that 

g x = ~ f l ,  h l = - f ~ "  

where f l  is determined by the equation 

i t  + (1 + c~2)flf'~ v = 0 ,  (22) 

subject to 

A ( 0 ) = f ; ( 0 ) = 0 ,  f ~ ' " ( 0 ) = - 1 ,  

f ; ' ( t / )~0 ,  fl '"(t/)~0 as q ~ .  

Finally, the transformation 

f l  (0) = (1 + " fH ( 0 ,  

where ~ = (1 +~2),~/, enables equation (21) to be written 

f ~  +f l  lf~1 = 0 ,  (23) 

subject to 

f~l (0) = fl'~ (0) = 0 ,  f~']' (0) = - 1, 

f ; ' l ( O ~ O ,  f~7(O--.O as r  (24) 

which is completely free of the parameter ~. 
Equation (23) subject to (24) coincides precisely with the equation arising in a two-dimen- 

sional study by Le Fevre [10] : he gives 

f~'~ (0) = 1.085125, f~] (0) = 0.540235. 

The reduction of the full three-dimensional equations to two-dimensional form for very 
large Prandtl numbers is a very interesting result, although since no dual solution of (23) 
subject to (24) is known, it does then follow that there are no dual solutions for any a in this case. 
However, this is only strictly true in the limit as a--* az, resulting in the inertia terms of equations 
(19) and (20) being ignored, and will presumably be untrue for large but finite Prandtl numbers. 

6. Conclusion 

The existence of a three-dimensional solution at a two-dimensional stagnation point has been 
exhibited by way of a numerical solution for a Prandtl number a = 0.72. Also investigated is the 
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behaviour at a general three-dimensional stagnation point for infinitely large Prandtl numbers. 
It is shown that in the limit as tr--+ ~ the problem can be reduced to the two-dimensional case. 

The physical meaning of such dual solutions is still not understood, although Davey and 
Schofield [-8] do suggest that they may be interpreted as a finite disturbance to the usual 
solution, and, as such, may be related to the general instability of such flows. It was with the 
possibility of experimental verification in mind and the hope that it may shed light on bi- 
furcation phenomena in general, that work on this project was started. 
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